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HSWG (High Shear Wet Granulation)

Old technology, but very common
In pharmaceutical industry!

The principle Is agglomeration that Is the formation of
agglomerates or aggregates by sticking together of smaller
particles.



It consists of agglomerating one or different powders by spraying
a liquid binder over the bed of powders under a vigorous mixing.

From: The science and engineering of granulation processes,
Jim Litster and Bryan Ennis




GRANULATION PHASES

The process consists of 3 phases:

1. Mixing
2. Wetting
3. Massing



Nucleation and wetting

Drop controlled
Mechanical dispersion controlled
Intermediate

Breakage and attrition

Influenced by:

1
2
3.
4.
5
6

RM properties
Agitation

Degree of filling
Liquid flowrate
Nozzle characteristics
Etc.

« Steady growth regime

* Induction growth regime

2 )

Consolidation and growth

* (Coalescence
Layering

From: The science and engineering of granulation processes,
Jim Litster and Bryan Ennis
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L/S ratio

Heuristic and empirical approach
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More scientific approach: torque rheometer
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From: Prediction of the growth kinetics andagglomeration mechanisms using
a mixer torquerheometer
E. Franceschinis, F. Schmid, R. Baggio, M. Dal Zotto, N. Realdon, A.C.
Santomaso




Target:
1. Particle size distribution

2. Composition
3. Granule porosity
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VARIABLES AFFECTING HSWG

Fixed recipe

Massing time

Amount of granulating
liquid

Liquid addition rate

Chopper speed

Impeller speed
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DISTURBS

Binder or liquid ' \
characteristics

Rheology of the
mass

Humidity of raw material

PSD of raw material
\/

Impurities
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HOW TO IMPLEMENT CONTROL?

We need to know:

1. The variables that describe
the state of the system, to be
measured.

2. The model of the dynamics.
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CAN WE MEASURE IT IN REAL TIME?

CAN WE USE A PID?

Reference

— @ =)

Impeller speed K
Liquid flowrate
EtcC.
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High shear wet granulation

\ 4

Granulation mechanism
. . |

Affecting factors

| ‘ Formulation design \ Impact of equipment l Process parameters \
I Process monitoring technologies I Modelling and simulation l
Application of e & :

R
Quality by Design v
Torql}a* fmd power consumption, Population balance model;
near-infrared spectroscopy, Ram discrete element method:;
spectroscopy, acoustic emission, coupled/hybrid models.
electrical capacitance tomography, '
measurements based on particle
~._  Size, etc.

Establish efficient product development strategy

PAT Is defined as "a system for
designing, analyzing and controlling
manufacturing by measuring the
critical quality and performance
attributes of raw materials and

processes’

From: A review of high shear granulation for better process understanding, control and product development,

Binbin Liu, Jiamiao Wang, Jia Zeng, Lijie Zhao, Youjie Wang, Yi Feng, Ruofei Du.
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MEASURING
NIR Spectroscopy PATII

Speétrum wi il Absorbance
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Power consumption and torgue measurements are some of the
earliest process analytical technology (PAT) tools developed to
monitor high shear wet granulation (HSWG) and have been widely
used to monitor granular growth and determine the optimal operational
process end point.
(1 1 etal 2020 Hansuld and Briens 2014 Cambbell et al 2011)
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NIR Spectroscopy

Wil Absorbance

Spectrum
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FEEDBACK CONTROL
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OUR APPROACH

NIR

+
Impeller speed HAPTIC

Liquid flowrate \ SENSOR
Reference ‘
Model

MPC Controller

Optimizer

DATA

State of the VIRTUAL FUSION
system (PSD) SENSOR



DATA-DRIVEN
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DATA FUSION

Spectrum Il Absorbance
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Like an eye inside the granulator!
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MODEL PREDICTIVE CONTROL
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Encoder

= Forwara Prediction within same cel I:i_‘J_:Z' ong-term dynamics
— Backpropagation (2) current dynamics
= Feed Forward to next cell (3)future dynamics

From: Deep Model Predictive Control with Online Learning for Complex Physical Systems
Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz and Michael Dellnitz
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Reference ‘

Optimizer [*

)

(-

Model

MPC Controller

1

OUR APPROACH

Impeller speed
Liquid flowrate

VIRTUAL
SENSOR

DATA
FUSION

4EEE———

NIR
+

HAPTIC
SENSOR

Offline Reinforcement
Learning to obtain a more
robust model



% Eigengran

Reference ‘

Optimizer [*

) Impeller speed

Liquid flowrate
Model

MPC Controller

1

DATA

NIR
+

HAPTIC
SENSOR

VIRTUAL FUSION
SENSOR | —

We transform PAT In a
control system!

We put quality control
Into the process!



% Eigengran

Deep learning Reinforcement
(RNN) Learning

Learning —» Knowledge

A \\\- _.__”,/
Control

/——’ Cognition ‘—-\‘
MPC

Virtual Sensors Actuators

sensor Perception

Environment or Other Agents
GRANULATION




COGNITIVE CONTROL

Cognitive control s a branch of artificial
Intelligence (Al) that deals with the development
of algorithms and techniques that enable
machines to learn from experience, reason about
complex situations, and adapt to changing
environments.

Learning Knowledge

Control
Cognition

Sensors Actuators
Perception Action

Environment or Other Agents
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COGNITIVE CONTROL AND MPC

&= sense Its environment

=) make decisions

é== |earn from experience

&= adapt to changing circumstances

Similarly, cognitive control uses active sensing, decision making,
learning, and adaptation to achieve better performance in control
applications.
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GRANULE € X MACHINA
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Data-driven discovery 1s revolutionizing how we model,

predict and control complex systems.

These systems are typically nonlinear, dynamic, multi-
scale in space and time, high dimensional, with dominant
underlying patterns that should be characterized and
modelled for the eventual goal of sensine, prediction,
estimation, and control.

Driving modern data science 1s the availability of vast Y\'31*
and increasing quantities of data, enabled by remarkable
innovations in sensors, 1ncreases 1n computational L,

ll' . Da t a ») d r 1- V e n d 1- S c 0 V e r V power, and virtually unlimited data storage and transfer '
2 1 st c E n t U 1- y R e n a-L S S an c e capabilities. Such vast quantities of data are affordine

new opportunities for data-driven discovery, which has

been referred to as 4'" paradigm of scientific discovery.



